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Recent new methods in Bayesian simulation have provided ways of
evaluating posterior distributions in the presence of analytically or
computationally intractable likelihood functions. Despite represent-
ing a substantial methodological advance, existing methods based on
rejection sampling or Markov chain Monte Carlo can be highly
inefficient and accordingly require far more iterations than may be
practical to implement. Here we propose a sequential Monte Carlo
sampler that convincingly overcomes these inefficiencies. We dem-
onstrate its implementation through an epidemiological study of the
transmission rate of tuberculosis.

approximate Bayesian computation � Bayesian inference �
importance sampling � intractable likelihoods � tuberculosis

Termed approximate Bayesian computation (ABC), recent
new methods in Bayesian inference have provided ways of

evaluating posterior distributions when the likelihood function is
analytically or computationally intractable (1–4). ABC algo-
rithms represent a substantial methodological advance because
they now admit realistic inference on problems that were con-
sidered intractable only a few years ago. The rapidly increasing
use of these methods has found application in a diverse range of
fields, including molecular genetics (5), ecology (6), epidemiol-
ogy (7), evolutionary biology (8, 9) and extreme value theory (1).

Given a likelihood function, f(x0��), and a prior distribution
�(�) on the parameter space, �, interest is in the posterior
distribution f(��x0) � f(x0��)�(�), the probability distribution of
the parameters having observed the data, x0 (10, 11).

To avoid directly evaluating the likelihood, all ABC algorithms
incorporate the following procedure to obtain a random sample
from the posterior distribution. For a candidate parameter vector
�* drawn from some density, a simulated data set x* is generated
from the likelihood function f(x��*) conditioned on �*. This vector
is then accepted if simulated and observed data are sufficiently
‘‘close.’’ Here, closeness is achieved if a vector of summary statistics
S(�) calculated for the simulated and observed data are within a
fixed tolerance (�) of each other according to a distance function �
(e.g., Euclidean distance). In this manner, ABC methods sample
from the joint distribution f(�, x��(S(x), S(x0)) � �), where interest
is usually in the marginal f(���(S(x), S(x0)) � �). The algorithms
work by accepting a value � with an average probability of Pr(�(S(x),
S(x0)) � ���). If the summary statistics S(�) are near-sufficient and
� is small then f(���(S(x), S(x0)) � �) should be a reasonable
approximation to f(��x0).

Existing ABC methods for obtaining samples from the posterior
distribution either involve rejection sampling (3, 4, 12) or Markov
chain Monte Carlo (MCMC) simulation (1, 2). Both of these classes
of methods can be inefficient. The ABC rejection sampler proceeds
as follows

ABC-REJ Algorithm

REJ1. Generate a candidate value �* � �(�) from the prior.
REJ2. Generate a data set x* � f(x��*).
REJ3. Accept �* if �(S(x*), S(x0)) � �.
REJ4. If rejected, go to REJ1.

Each accepted vector represents an independent draw from
f(���(S(x), S(x0)) � �). Acceptance rates for algorithm ABC-REJ
can be very low as candidate parameter vectors are generated from
the prior �(�), which may be diffuse with respect to the posterior.

Accordingly, Marjoram et al. (2) proposed to embed the likelihood-
free simulation method within the well known MCMC framework.
This algorithm proceeds as follows

ABC-MCMC Algorithm

MC1. Initialize �1, i � 1.
MC2. Generate a candidate value �* � q(���i), where q is some

proposal density.
MC3. Generate a data set x* � f(x��*).
MC4. Set �i�1 � �* with probability

� � min� 1,
���*�q�� i��*�

��� i�q��* �� i�
1���S�x*� , S�x0�� � ��� ,

otherwise set �i�1 � �i.
MC5. If i � N, increment i � i � 1 and go to MC2.

Here 1(A) � 1 if A is true, and 0 otherwise. The candidate vector
is generated from an arbitrary proposal density q(���) and accepted
with the usual Metropolis–Hastings acceptance probability. The
(intractable) likelihood ratio is now coarsely approximated by 1 if
simulated and observed data are sufficiently ‘‘close,’’ and 0 other-
wise. Algorithm ABC-MCMC generates a sequence of serially and
highly correlated samples from f(���(S(x), S(x0)) � �). Determina-
tion of the chain length, N, is therefore obtained through a careful
assessment of convergence (13) and consideration of the chain’s
ability to explore parameter space (i.e., chain mixing).

When the prior and posterior are dissimilar, algorithm ABC-
MCMC delivers substantial increases in acceptance rates over
algorithm ABC-REJ [Marjoram et al. (2) report 0.2% acceptance
rates over 0.0008% in a simple coalescent tree analysis], although
at the price of generating dependent samples. However, because
acceptance rates for ABC samplers are directly proportional to the
likelihood; if the ABC-MCMC sampler enters an area of relatively
low probability with a poor proposal mechanism, the efficiency of
the algorithm is strongly reduced because it then becomes difficult
to move anywhere with a reasonable chance of acceptance, and so
the sampler ‘‘sticks’’ in that part of the state space for long periods
of time. This is illustrated in the following toy example.

Toy Example
As an illustration, suppose that the posterior of interest is given by
the mixture of two normal distributions

f�� � x0� �
1
2

��0,
1

100� 	
1
2

��0, 1�,

where �(
, �2) is the density function of a N(
, �2) random
variable. Here, the second component implies large regions of
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relatively low probability with respect to the lower variance first
component (Fig. 1 Lower). In the ABC setting, this posterior may
be realized by drawing x � (x1, . . . , x100), xi � N(�, 1) and by
specifying

��S�x�, S�x0�� � � �x�� with probability 1�2
�x1� with probability 1�2 ,

where x� � 1�100 	 xi denotes the sample mean.
With a prior of �(�) � U(
10, 10) and � � 0.025, the ABC-REJ

algorithm required a mean of 400.806 data-generation steps (sim-
ulations from the likelihood) for each accepted realization based on
1,000 accepted realizations. With an acceptance rate of �0.25%,
this is highly inefficient.

In contrast, Fig. 1 shows the result of implementing the ABC-
MCMC algorithm initialized at �0 � 0, with N � 10,000 iterations
and with proposals generated via the random walk q(���t) � N(�t,
0.152). When the sampler is within the high-density region, transi-
tions between different parameter values are frequent (acceptance
rate �5%). However, when the sampler moves outside of this
region, the frequency of transitions drops markedly, especially so
for the extended period at �5,000–9,000 iterations. Of course, the
samples should visit the distributional tails and will do so for a
number of iterations proportional to the posterior probability.
However, as is evident from the histogram of the sampler output,
the number of further iterations required so that the realizations in
the tail are in proportion to the target distribution will be far in
excess of the initial 10,000.

In the search for improved ABC methods, poor Markov chain
performance may be improved by embedding the target distribu-
tion as a marginal distribution within a larger family of related
distributions among which it is far easier for the sampler to move
around. This was essentially the approach adapted for ABC by
Bortot et al. (1), although such algorithms are wasteful by construc-
tion in that samples from the auxiliary distributions are not used in
the final analysis.

As an alternative, we propose to improve upon simple rejection
sampling by adopting a sequential Monte Carlo (SMC)-based
simulation approach. Here, a full population of parameters
�(1), . . . , �(N) (termed particles) is propagated from an initial,
user-specified distribution, through a sequence of intermediary

distributions, until it ultimately represents a sample from the target
distribution. SMC methods can be considered an extension of
importance sampling. We will demonstrate that the SMC approach
can substantially outperform both MCMC and rejection sampling
in the ABC framework.

Advantages of the SMC approach are

1. Like rejection sampling, the sampler will never become
‘‘stuck’’ in regions of low probability.

2. Unlike rejection sampling, severe inefficiencies generated by
mismatch of (initial) sampling and target distributions are
avoided.

3. Particles that represent the target posterior poorly are elimi-
nated in favor of those particles that represent the posterior well.

4. The population-based nature of the sampler means that complex
(e.g., multimodal) posteriors may be explored more efficiently.

5. Samples are obtained from a number of distributions with
differing tolerances (�). This permits an a posteriori, or dynamic,
examination of the robustness of the posterior to this choice.

6. Unlike MCMC, SMC particles are uncorrelated and do not
require the determination of a burn-in period or assessment of
convergence.

Disadvantages of the SMC approach are considered in Discussion.
Here, we propose an ABC sampler based on SMC simulation.

We initially outline a generic SMC algorithm before exploiting
ideas based on PRC to derive a more efficient algorithm for the
ABC setting. Finally, we demonstrate its utility with regard to the
toy example considered above and in a reexamination of a
previously implemented analysis of the transmission rate of
tuberculosis.

Methods
SMC Without Likelihoods. We wish to sample N particles �(1), . . . ,
�(N) from the posterior f(���(S(x), S(x0)) � �), for observed data
x0, and for unknown parameter vector � � �. We assume that
the summary statistics S(�), the tolerance �, and the distance
function � are known.

Let �1
(1), . . . , �1

(N) � 
1(�) be an initial population from a known
density, 
1, from which direct sampling is possible, and by fT(�) �
f(���(S(x), S(x0)) � �) the target distribution (this notation will
become clear shortly). Standard importance sampling would then
indicate how well each particle �1

(i) adheres to fT(�) by specifying
the importance weight, W T

(i) � fT(� 1
(i))�
1(�1

(i)), it should receive in
the full population of N particles. The effectiveness of importance
sampling is sensitive to the choice of sampling distribution, 
1. The
prior �(�) is often used for this purpose. Importance sampling can
be highly inefficient if 
1 is diffuse relative to fT and can fail
completely in the case of sampling and target distribution mismatch.

The idea behind sequential sampling methods is to avoid the
potential disparity between 
1 and fT by specifying a sequence of
intermediary distributions f1, . . . , fT
1, such that they evolve
gradually from the initial distribution towards the target distri-
bution. For example, one can choose a geometric path specifi-
cation where ft(�) � fT(�)�t 
1(�)1
�t with 0 � �1 � . . . � �T �
1 (14, 15). Hence, it is possible to move smoothly and effectively
in sequence from 
1 to fT using repeated importance sampling,
generating a series of particle populations {�t

(i)} � {�t
(i) : i �

1, . . . , N}, for t � 1, . . . T. That is, sequential methods proceed
by moving and reweighting the particles according to how well
they adhere to each successive distribution, ft.

In the ABC setting, we may naturally define the sequence of
distributions f1 . . . , fT as

ft�����S�x�, S�x0�� � �t� �
����

Bt
�

b�1

Bt

1���S�x �b�� , S�x0�� � � t� .

[1]

Fig. 1. Trace and histogram of �. (Upper) Trace of 10,000 ABC-MCMC sampler
iterations. (Lower) Target mixture distribution (solid line) and histogram of
ABC-MCMC sampler output.
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Here, x(1), . . . , x(Bt) are Bt data sets generated under a fixed
parameter vector, x(b) � f(x��), and {�t} is a strictly decreasing
sequence of tolerances. The nested family of distributions generated
by varying � (continuously) was considered by Bortot et al. (1) in
their augmented state space ABC algorithm. By specifying �t � �t
1,
we ensure that the likely range of parameter values in each
progressive distribution is a subset of the one it precedes. This is a
desirable property for our sampling distributions. By specifying �T �
�, we realize the final particle population {�T

(i)} as a weighted sample
from the target distribution. Setting Bt � B and �t � � for all t
reduces to the likelihood specified by Marjoram et al. (2), and
further B � 1 to the likelihood adopted in algorithm ABC-MCMC.
The target distribution, fT, is specified by �T � �.

PRC. In ABC samplers, Bt � 1 is the most computationally efficient
specification, in that some action occurs (e.g., a realization or move
proposal is accepted) each time a nonzero likelihood is generated.
However, because the particle weight under SMC methods is
directly proportional to the likelihood, there is a large probability
that the likelihood, and therefore the particle weight, will be zero,
thereby rendering the particle useless. Fortunately, the idea of PRC
(see chapters 2 and 3 of ref. 16) permits the repeated resampling
(and moving) of particles from the previous population to replace
those particles with zero weight. PRC continues until N particles
with nonzero weight are obtained. See Appendix for further details.

At each step, SMC methods move each particle according to a
Markov kernel Kt to improve particle dispersion. This induces a
particle approximation to the importance sampling distribution

t(�t) � �� 
t
1(�t
1)Kt(�t��t
1)d�t
1, for populations t � 2, . . . , T.
Choices of Kt include a standard smoothing kernel (e.g., Gaussian)
or a Metropolis–Hastings accept�reject step. The kernel accord-
ingly enters the particle weight calculation.

A recent innovation in SMC methods has been the introduction
of a backward Markov kernel Lt
1 with density Lt
1(�t
1��t) into the
weight calculation (17). The backward kernel relates to a time-
reversed SMC sampler with the same target marginal distribution
as the (forward-time) SMC sampler induced by Kt. Because only
specification of Kt is required in order to implement an SMC
sampler, the backward kernel is essentially arbitrary. The kernel
Lt
1 may therefore be optimized to minimize the variance of the
weights induced by the importance sampling distribution 
t
(through Kt). This is difficult in general, however, so simplified
forms are often adopted. See ref. 17 for further discussion.

SMC algorithms measure the degree of sample degeneracy
within each population through the effective sample size (ESS).
ESS calculates the equivalent number of random samples required
to obtain an estimate, such that its Monte Carlo variation is equal
to that of the N weighted particles. This may be estimated as 1 �
[	i�1

N (Wt
(i))2]
1 � N for each t (16, 18). Sample degeneracy can

occur through sampling and target distribution mismatch when a
small number of particles have very large weights. Through a
resampling step, particles with larger weights become better rep-
resented in the resampled population than those with smaller
weights. Those particles with sufficiently small weights, which
poorly approximate ft, may be eliminated. The resampling thresh-
old, E, is commonly taken to be N�2.

Combining PRC with SMC, we obtain the following (ABC-
PRC) algorithm

ABC-PRC Algorithm

PRC1. Initialize �1, . . . , �T, and specify initial sampling distri-
bution 
1.
Set population indicator t � 1.

PRC2. Set particle indicator i � 1.
PRC2.1. If t � 1, sample �** � 
1(�) independently from 
1.

If t  1, sample �* from the previous population {�t
1
(i) }

with weights {Wt
1
(i) }, and perturb the particle to �** �

Kt(���*) according to a Markov transition kernel Kt.
Generate a data set x** � f(x��**).
If �(S(x**), S(x0)) � �t, then go to PRC2.1.

PRC2.2. Set

�t
�i� � �** and Wt

�i� � � ��� t
�i���
1�� t

�i�� if t � 1
��� t

�i��Lt
1��* �� t
�i��

���*�Kt�� t
�i���*�

if t  1 ,

where �(�) denotes the prior distribution for �, and
Lt � 1 is a backward transition kernel.

If i � N, increment i � i 	 1 and go to PRC2.1.
PRC3. Normalize the weights so that 	i�1

N Wt
(i) � 1.

If ESS � [	i�1
N (Wt

(i))2]
1 � E then resample with
replacement, the particles {�t

(i)} with weights {Wt
(i)} to

obtain a new population {�t
(i)}, and set weights {Wt

(i) �
1�N}.

PRC4. If t � T, increment t � t � 1 and go to PRC2.

Samples {�T
(i)} are weighted samples from the posterior distri-

bution f(���(S(x), S(x0)) � �). The validity of this algorithm is
derived by construction from the validity of the combination of
general SMC methods and the PRC process (see Appendix).
Algorithm ABC-PRC corresponds to algorithm ABC-REJ for
the special case when T � 1 and 
1(�) � �(�).

For the remainder of this article, we consider Kt(�t��t
1) �
Lt
1(�t
1��t) as a Gaussian kernel with common variance (fol-
lowing ref. 19), which we have found to perform adequately. For
discussions on closer to optimal choices of Lt
1, see ref. 17, and
for applications of SMC and more technical proofs of the SMC
algorithm’s validity, see refs. 16, 17, and 20–24. Finally, we note
that if Kt(�t��t
1) � Lt
1(�t
1��t), 
1(�) � �(�) and the prior
�(�) � 1 over �, then all weights are equal throughout the
sampling process and may safely be ignored [in addition to
ignoring all population (PRC3) resampling steps].

Results
Toy Example (Revisited). We now implement algorithm ABC-PRC
in the mixture of normals posterior considered earlier. We generate
a sample of N � 1,000 particles by considering a sequence of
three distributions f1, f2, and f3 defined by Eq. 1 with �1 � 2, �2 �
0.5 and �3 � 0.025, and with prior distribution �(�) � U(
10,
10). We specify 
1(�) � �(�) and Kt(�t��t
1) � Lt
1(�t
1��t) as
a Gaussian random walk so that all weights are equal.

The initial (
1) population and histograms of f1 to f3 are
illustrated in Fig. 2. The movement in distribution towards the
target distribution is a clear progression, with the final sample
adhering remarkably well to the target distribution, especially in
the tails where the ABC-MCMC algorithm performed particu-
larly poorly (Fig. 1).

ABC algorithms may be intuitively compared through the num-
ber of likelihood ‘‘evaluations,’’ that is, the number of data-
generation steps. Table 1 enumerates the mean number of data-
generation steps required to move a particle between two successive
populations. As the tolerance reduces with each successive distri-
bution, ft, the number of data-generation steps we expect in-
creases. This effect is partially offset by the degree of similarity
between population distribution ft and its induced sampling
distribution 
t. The total number of data-simulation steps in the
ABC-PRC algorithm was 75,895. This is more than the illus-
trated 10,000 for the ABC-MCMC algorithm (Fig. 1), but this
latter simulation requires a substantially longer run before we
can be satisfied that a representative sample has been drawn.
Accordingly, the ABC-PRC algorithm is far more efficient for
this case.

In contrast, using the ABC-REJ algorithm results in utilizing
400 data-simulation steps per final particle (Table 1). Here, there
is a clear advantage in adopting a series of intermediary distribu-
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tions between 
1 and the target distribution. Finally, as an indica-
tion of the maximum possible efficiency of ABC samplers for this
example, performing rejection sampling with sampling distribution
equal to the posterior distribution requires 21 data-generation
steps per final particle. Note that each particle must still satisfy steps
REJ2 and REJ3, so we do not automatically accept every particle
proposed. This gives algorithm ABC-PRC 28% of maximum
possible efficiency in this case, compared with only 5% for rejection
sampling.

Analysis of Tuberculosis Transmission Rates. We now reimplement an
analysis of tuberculosis transmission rates originally investigated
using algorithm ABC-MCMC (7). The aim of this study was to
estimate three compound parameters of biological interest, namely,
the reproductive value, the doubling time, and the net transmission

rate. The data used come from a study of tuberculosis isolates
collected in San Francisco during the early 1990s by Small et al. (25).
These consist of 473 isolates genotypes using the IS6110 marker; the
resulting DNA fingerprints can be grouped into 326 distinct geno-
types as follows

301 231 151 101 81 52 44 313 220 1282 ,

where nk indicates there were k clusters of size n. The ABC-MCMC
method was used in conjunction with a stochastic model of trans-
mission, which is an extension of a birth and death process to include
mutation of the marker. Simulating samples from this model allows
comparisons with the actual data through two summary statistics:
g, the number of distinct genotypes in the sample, and H, the gene
diversity. An informative prior was used for the mutation rate taken
from published estimates of the rate for IS6110. Further details can
be found in ref. 7.

Tanaka et al. (7) previously implemented the ABC-MCMC
algorithm with tolerance � � 0.0025. Three Markov chains with an
average acceptance rate of �0.3% were thinned and combined to
form the final sample, utilizing 2.5 million data-generation steps.
(Actually, more were used, as one chain became ‘‘stuck’’ in a
distributional tail for most of its length, as illustrated in Fig. 1, and
had to be rerun.)

We illustrate algorithm ABC-PRC with a sequence of 10 distri-
butions, defined by �1 � 1 and for t � 2, . . . , 9, �t � 1

2
(3�t
1 
 �10)

is taken to be halfway between the previous tolerance and the target
of �10 � 0.0025. Ten distributions were selected so that successive
distributions were reasonably similar. We adopt Kt(�t��t
1) �
Lt
1(�t
1��t) as the ABC-MCMC Gaussian random walk proposal

Fig. 2. (Upper Left to Lower Right) Particle distributions 
1, f1, f2, and f3 defined with �1 � 2, �2 � 0.5, and �3 � 0.025 using ABC-PRC algorithm. Dashed line
denotes �(�). The mixture of normals target distribution is superimposed.

Table 1. Mean number of data-generation steps per final particle
for each population, based on 1,000 particles, under algorithms
ABC-PRC and ABC-REJ

t �t ABC-PRC

ABC-REJ

Prior Posterior

1 2.000 4.907 – –
2 0.500 4.899 – –
3 0.025 66.089 400.806 21.338

Total 75.895 400.806 21.338

Final two columns use U( � 10, 10) prior and known posterior mixture of
normals as sampling distributions.
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of Tanaka et al. (7) with a slightly larger step for the mutation
parameter.

Based on a population size of N � 1,000, Fig. 3 illustrates
smoothed posterior distributions of the quantities of interest: (Fig.
3 Left) the net transmission rate (� 
 �) is the rate of increase of
the number of infectious cases in the population; the doubling time
[log(2)�(� 
 �)] is the required duration for the number of
infectious cases in the population to double; (Fig. 3 Right) the
reproductive value (���) is the expected number of new infectious
cases produced by a single infectious case while the primary case is
still infectious. As is evident, the results of the ABC-MCMC and
ABC-PRC algorithms are essentially indistinguishable.

Relative algorithm efficiencies can again be measured by the
mean number of data-generation steps per final particle. Table
2 lists the number of data-generation instances in ABC-PRC and
ABC-REJ algorithms. For algorithm ABC-REJ, this amounts to
a mean of 7,206.3 data-generation steps per particle. In contrast,
algorithm ABC-PRC yields a mean of 1,421.3 data-generation
steps per particle, 5 times more efficient.

Comparisons to the original ABC-MCMC analysis of Tanaka
et al. (7) can also be made in terms of the number of data-
generation steps required to generate one uncorrelated particle.
Here, the Markov nature of the sampler and the very low
acceptance rates induce a strongly dependent sequence. Thin-
ning this sequence so that there were no significant (marginal)
autocorrelations above lag 10 resulted in using 8,834 data-
generations steps per realization. Repeating this so that there
were no significant autocorrelations at any lag yielded 67 un-
correlated particles, corresponding to �27,313 data-generation

steps per final realization. By this measure, algorithm ABC-PRC
is �20 times more efficient than the MCMC implementation.

Discussion
Likelihood-free samplers for Bayesian computation are growing
in importance, particularly in population genetics and epidemi-
ology, so it is crucial that efficient and accessible algorithms are
made available to the practitioner. Existing MCMC algorithms
exhibit an inherent inefficiency in their construction, whereas
rejection methods are wasteful when sampling and target dis-
tributions are mismatched. Through an SMC approach, we may
circumvent these problems and generate improved sampling,
particularly in distributional tails, while achieving large compu-
tational savings.

Evaluations of certain user-specified aspects of algorithm
ABC-PRC have not been presented, although these have been
studied for SMC algorithms in general, and the necessity of their
specification could be considered a disadvantage of the SMC
approach. The incorporation of measures other than effective
sample size to determine the optimal resampling time is given by
Chen et al. (26) and forward and backward kernel choice by Del
Moral et al. (17). Jasra et al. (27) give a study of various tolerance
schedules and the number of distributions, f1, . . . , fT. It seems
credible that the tolerance schedule and distribution number
could be determined dynamically based on one-step-ahead
estimates of distributional change, ft
1 3 ft, and the required
computation (number of data-generation steps). This could be
considered one method of selecting the final tolerance �T.

Appendix
We briefly justify the use of partial rejection control in deriving
algorithm ABC-PRC. Following ref. 17, a generic sequential
Monte Carlo algorithm is implemented as follows

SMC Algorithm

SMC1. Identify the sequence of distributions f1, . . . , fT, where
fT corresponds to the target distribution, and initial
sampling distribution 
1.
Set population indicator t � 1.

SMC2. Set particle indicator i � 1.
SMC2.1. If t � 1, sample �t

(i) � 
1(�) independently from 
1.
If t  1, perturb each particle to �t

(i) � Kt(���t
1
(i) )

according to a Markov transition kernel Kt.
SMC2.2. Evaluate weights Wt

(i) for each particle according to

Wt
�i� � �ft��t

�i���
1��t
�i�� if t � 1

Wt
1
�i�

f t�� t
�i��Lt
1�� t
1

�i� �� t
�i��

f t
1�� t
1
�i� �Kt�� t

�i��� t
1
�i� �

if t  1,

Fig. 3. (Left to Right) Posterior distribution of f(� � ��x0) (net transmission rate) f(log(2)�(� � �)�x0) (doubling time) and f(����x0) (reproductive value) for both
ABC-MCMC (solid) and ABC-PRC (dash) samplers.

Table 2. Mean number of data-generation steps per final particle
for each population, based on 1,000 particles, under algorithms
ABC-PRC and ABC-REJ

t � ABC-PRC ABC-REJ

1 1.000 2.595
2 0.5013 8.284
3 0.2519 8.341
4 0.1272 7.432
5 0.0648 10.031
6 0.0337 17.056
7 0.0181 34.178
8 0.0102 72.704
9 0.0064 171.656
10 0.0025 1,089.006 7,206.333
Total 1,421.283 7,206.333
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where ft denotes the intermediate distribution at step t
and Lt
1 is a backward transition kernel.
If i � N, increment i � i � 1 and go to SMC2.1.

SMC3. Normalize the weights so that 	i�1
N Wt

(i) � 1.
If ESS � �	i�1

N (Wt
(i))2]
1 � E, then resample with

replacement, the particles {�t
(i)} with weights {Wt

(i)} to
obtain a new population {�t

(i)}, and set weights {Wt
(i) �

1�N}.
SMC4. If t � T, increment t � t � 1 and go to SMC2.

Algorithm SMC can be justified intuitively by considering the final
weight of particle �T

(i), assuming no weight normalization for clarity

WT
�i� �

f1��1
�i��


1��1
�i��

	
t�2

T ft��t
�i��Lt
1��t
1

�i� ��t
�i��

ft
1��t
1
�i� �Kt��t

�i���t
1
�i� �

�
fT��T

�i��


1��1
�i��

	
t�2

T Lt
1��t
1
�i� ��t

�i��

Kt��t
�i���t
1

�i� �
.

The ratio fT(�T
(i))�
1(�1

(i)) is immediately identifiable as the
standard importance sampling weight with 
1 as the sampling
distribution. The product of kernel ratios term evaluates the
ratio of probabilities of moving from �T

(i)3 �1
(i) (numerator) and

from �1
(i) 3 �T

(i) (denominator).
Recognizing that many particles of small weight will have

minimal impact on the final population, fT, (e.g., they may be lost
in the resampling step SMC3), partial rejection control aims to
remove them at an earlier stage according to the following
scheme (see chapters 2 and 3 of ref. 16).

Given a particle population {�t
(i)} with weights {Wt

(i)}, a small
threshold, c, is specified such that all particles with weights
greater than c remain unchanged. For those particles with
weights smaller than c, there is a chance [with probability min(1,
Wt

(i)�c)] that these particles also remain unchanged, otherwise
they are replaced by a particle from the previous population
{�t
1

(i) } chosen according to weights {Wt
1
(i) }. This particle is then

propagated from distribution ft
1 to ft (via Kt) as before, where
its weight is then compared to the threshold, c, once more. This
process is repeated until all particles have passed the threshold.
PRC is performed within SMC algorithms before the population
resampling step (SMC3). See ref. 16 for a justification of this
approach.

For a particle population {�t
(i)} with weights {Wt

(i)} and t  1,
this process is given in algorithmic form by

PRC Algorithm

A1. Set threshold value c  0 and particle indicator i � 1.
A2. With probability min{1, Wt

(i)�c}, set weight Wt
(i) �

max{Wt
(i), c} and go to A4.

Otherwise, go to A3.
A3. Sample a new particle, �*, from {�t
1

(i) } with probability
proportional to {Wt
1

(i) }.
Perturb the particle to �t

(i) � Kt(���*) according to a
Markov transition kernel Kt.
Set

Wt
�i� � W� t
1

ft��t
�i��Lt
1��*��t

�i��

ft
1��*�Kt��t
�i���*�

,

where W� t
1 � 1�N 	j�1
N Wt
1

(j) and Lt
1 is a backward
transition kernel.
Go to A2.

A4. If i � N, increment i � i � 1 and go to A2.
A5. Normalize weights according to 	i�1

N Wt
(i) � 1.

PRC may benefit the SMC algorithm in the ABC setting as
follows: The minimum computational specification for the se-
quence {Bt} in the posterior (Eq. 1) is Bt � 1 for all t. In this
setting, large numbers of particles will have identically zero
weight, as �(S(x), S(x0))  �t occurs with high probability.
Suppose we then implement the PRC algorithm for some c  0
such that only identically zero weights are smaller than c. This
will remove those particles for which �(S(x), S(x0))  �t and
replace them with particles for which �(S(x), S(x0)) � �t, which
then belong to ft.

This process is equivalent to deriving the entire population
{�t

(i)} one particle at a time, by taking random draws from the
previous population, perturbing the particle, and accepting the
particle if �(S(x), S(x0)) � �t. That is, incorporating the
data-generation process, we can replace step SMC2 in algorithm
SMC above with step PRC2 in algorithm ABC-PRC. Accord-
ingly, we are able to maximize algorithm efficiency in that we
obtain a new particle on each occasion for which �(S(x),
S(x0)) � �t, rather than wasting extra data-generation steps in
overevaluating likelihood values.
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